Section 9.3 – Geometric Sequences and Series

GEOMETRIC SEQUENCE: ___
__
Common Ratio: ___

Today we are going to look for a "simple" way to find an explicit formula for a geometric sequence. Consider the following sequence. Do you see a pattern for obtaining each term?

<table>
<thead>
<tr>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>15</td>
<td>45</td>
<td>135</td>
<td>405</td>
</tr>
<tr>
<td>5</td>
<td>(5X3)</td>
<td>(5X3)X3</td>
<td>((5X3)X3)X3</td>
<td>(((5X3)X3)X3)X3</td>
</tr>
<tr>
<td>$5(__)^0$</td>
<td>$5(__)^1$</td>
<td>$5(__)^2$</td>
<td>$5(__)^3$</td>
<td>$5(__)^4$</td>
</tr>
</tbody>
</table>

Therefore the **EXPLICIT FORMULA** is: $a_n = ______________________________$

What is the **RECURSIVE FORMULA**?

General Form of a Geometric Sequence:

Recursive: $a_1, a_{n+1} = a_n (r)$

Explicit: $a_n = a_1 \cdot r^{n-1}$

Example 1: For the following geometric sequences, find both the explicit and recursive formulas.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Recursive Formula AND Explicit Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 2, -12, 72, -432, ...</td>
<td>$a_1 = __________ \quad a_{n+1} = __________</td>
</tr>
<tr>
<td></td>
<td>$a_n = __________$</td>
</tr>
<tr>
<td>b) 9, 7.2, 5.76, 4.608, ...</td>
<td>$__________$</td>
</tr>
</tbody>
</table>
Example 2: Find the explicit formula and the indicated term.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>(a_4 = 64, \quad r = \frac{1}{4})</td>
</tr>
<tr>
<td></td>
<td>(a = \frac{1}{4}) (a_8 = \frac{1}{16})</td>
</tr>
<tr>
<td>b)</td>
<td>(5, 30, 180...)</td>
</tr>
<tr>
<td></td>
<td>(a_n =) (a_{10} = \frac{1}{16})</td>
</tr>
<tr>
<td>c)</td>
<td>(a_2 = 3, \quad a_5 = \frac{3}{64})</td>
</tr>
<tr>
<td></td>
<td>(a_n = \frac{3}{64}) (a_1 =) (\frac{1}{16})</td>
</tr>
<tr>
<td>d)</td>
<td>(a_3 = \frac{16}{3}, \quad a_5 = \frac{64}{27})</td>
</tr>
<tr>
<td></td>
<td>(a_n = \frac{16}{3}) (a_7 =) (\frac{1}{16})</td>
</tr>
</tbody>
</table>

Could you find the 7th term without finding the general term formula?
Example 1: Find the indicated form and find the partial sum for the series.

\[
\sum_{n=1}^{5} 5 \cdot 2^{n-1}
\]

\[
\sum_{k=\text{___}}^{\text{____}} \text{____} + \text{____} + \text{____} + \text{____} + \text{____} \]

\[
S_7 = \text{__________}
\]

Just finding the terms and adding them up is good for series with a small number of terms. This is not a good method, however, if we have a large number of terms. And your teacher may ask you to find the sum of 100 terms... what a meanie!

We need a formula!

GEOMETRIC SERIES:

\[
S_n = \frac{a_1(1-r^n)}{1-r} \quad \text{for } r \neq 1
\]

Example 2: Find each indicated partial sum using the formula.

\[
\sum_{a=1}^{\infty} \frac{3}{4^a}
\]

\[
\sum_{k=\text{____}}^{\text{____}} \text{____} + \text{____} + \text{____} + \text{____} + \text{____} \]

\[
S_6 = \text{__________}
\]

Now let's look at finding the sum of a geometric series with an infinite number of terms.

Ex. 3) Find \(S_{\infty} \) for \(\sum_{k=1}^{\infty} 3(2)^{k-1} \).

\(S_{\infty} = \text{__________} \)

(Put the term formula in \(Y_1 \) and the sum formula in \(Y_2 \). Go to the table and see what happens to the terms, and the sum of the terms, as \(k \) gets larger.)

Can we find this sum? Why?
Ex. 4) Find S_∞ for $\sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^{k-1}$. $S_\infty =$ ______________

(Put the term formula in \sum_1^n and the sum formula in \sum_2^n. Go to the table and see what happens to the terms, and the sum of the terms, as k gets larger.)

Can we find this sum? Why?

__

__

Why are we able to find the sum with one series and not the other?

__

__

Now, lets look at the general formula for finding the sum of a series and ask -

What would the formula become if r is a number between -1 and 1 and n is getting very large - approaching infinity?

$$S_n = \frac{a_1 \left(1 - r^n\right)}{1 - r} \quad = \quad \text{______________}$$

Therefore, the Sum of an Infinite Geometric Series for $|r| < 1$ is... $S = \frac{a_1}{1 - r}$.

Find the sums of the following infinite geometric series.

Ex. 5) $\sum_{n=1}^{\infty} 4(.06)^{n-1}$ $S =$ ______________

Ex. 6) $3 + 0.3 + 0.03 + 0.003 + \ldots$ $S =$ ______________