Part 1 - Misc. Function Concepts

Before we move on, we need to review what it means to find the composition of two functions.

Composition of Two Functions – \(f(g(x)) = (f \circ g)(x) \) where the domain is the set of all \(x \) in the domain of \(g \) such that \(g(x) \) is in the domain of \(f \).

Example 1: Given \(f(x) = x + 2 \) and \(g(x) = 4 - x^2 \), find...

<table>
<thead>
<tr>
<th>a. ((f \circ g)(-2))</th>
<th>b. (g(f(5)))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c. (f(g(x)))</th>
<th>d. ((g \circ f)(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 2: Given the graphs, evaluate each of the following compositions.

<table>
<thead>
<tr>
<th>a. ((f \circ g)(1))</th>
<th>b. (g(f(-2)))</th>
<th>c. ((f \circ g)(-1))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remember inverses? Well, a function, \(f(x) \), has an inverse function, \(f^{-1}(x) \), if and ONLY if:

(a) The domain and range of \(f(x) \) are the same as the range and domain, respectfully, of \(f^{-1}(x) \).

(b) \(f(x) \) is a one-to-one function, which means it passes both the vertical AND horizontal line tests, or in a data chart for the function, the \(x \)-values do not repeat AND the \(y \)-values do not repeat.

(c) \(f(x) \) and \(f^{-1}(x) \) are reflections of each other in the line \(y = x \).

(d) \(f(f^{-1}(x)) = f^{-1}(f(x)) = x \)
Example 3: More with Inverses.

a. Verify by composition whether or not
 \[f(x) = 3x - 6 \quad \text{and} \quad g(x) = \frac{x + 6}{3} \]
 are inverses of each other.

b. If \(f(x) \) is represented by the graph, give the domain and range (in interval notation) of its inverse. Also, is its inverse a function? Why or why not?

We can identify the intervals (\(x \)-values) over which a function is increasing, decreasing, or constant.

A function \(f \) is...
- **increasing** on an interval if, for any \(x_1 \) and \(x_2 \) in the interval, \(x_1 < x_2 \) implies \(f(x_1) < f(x_2) \).
- **decreasing** on an interval if, for any \(x_1 \) and \(x_2 \) in the interval, \(x_1 < x_2 \) implies \(f(x_1) > f(x_2) \).
- **constant** on an interval if, for any \(x_1 \) and \(x_2 \) in the interval, \(f(x_1) = f(x_2) \).

It is important to note that these intervals are **OPEN**. This means we only use parentheses, NO BRACKETS. This is because at the \(x \)-value where the function changes from increasing to decreasing, or from increasing to constant, or so on, the function is in the process of changing direction.

Example 4: Identify the intervals where the function is increasing, decreasing, and constant.

Part 2 - Transformations of Parent Graphs

Shift \((h, k)\) ⇒ Left or Right \(h\) \quad Horizontal Shift \quad Down or Up \(k\) \quad Vertical Shift

Recall from Algebra II: Given \(f(x) = x^2 \), identify the transformations for the following...

a. \(g(x) = (x - 3)^2 \)
b. \(h(x) = x^2 - 3 \)
c. \(j(x) = (x + 4)^2 + 5 \)

So what about functions that are NOT quadratic?

\[
\begin{align*}
 f(x) &= (x-h)^2 + k \\
 f(x) &= |x-h| + k \\
 f(x) &= (x-h)^3 + k \\
 f(x) &= \sqrt{x-h} + k \\
 f(x) &= \frac{1}{x-h} + k
\end{align*}
\]
Example 1: Write the equation of each graph.

![Graphs A, B, C]

Reflecting Graphs ⇒ reflection in the x-axis $h(x) = -f(x)$
reflection in the y-axis $h(x) = f(-x)$

Example 2: Graph each function.

![Graphs a, b, c]

Vertical Shrink or Stretch ⇒ $y = c \cdot f(x)$
x-values stay the same, y-values are multiplied by c

Example 3: Graph each function.

![Graphs a, b, c]
Horizontal Shrink or Stretch
\[y = f \left(c \cdot x \right) \]
- \(x\)-values divided by \(c\), \(y\)-values stay the same

Example 4: Graph each function.

a. \(f(3x) \) given \(f(x) = \sqrt{x} \)

b. \(f\left(\frac{1}{3}x\right) \) given \(f(x) = \sqrt{x} \)

Given the graph of \(f(x) \), graph the following transformations. LABEL or use different COLORS.

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Graph 1</th>
<th>Graph 2</th>
<th>Graph 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (y = -f(x))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) (y = f(-x))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) (y = f(x) - 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) (y = f(x + 1))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) (y = 2f(x))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f) (y = f(2x))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g) (y = \frac{1}{2}f(x))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h) (y = f\left(\frac{1}{2}x\right))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>