Even and Odd Functions, Piece-Wise Functions, and the Greatest Integer Function

Even functions are symmetric with the y-axis. (Fold across the y-axis.)
Odd functions are symmetric with the origin. (Rotate 180 degrees about the origin.)

Example 1: Determine whether each function is even, odd, or neither based on symmetry. EXPLAIN.

For Even functions: \(f(-x) = f(x) \) (Plug in \(-x\) into the function and you get the SAME.)
For Odd functions: \(f(-x) = -f(x) \) (Plug in \(-x\) into the function and you get the OPPOSITE.)

Example 2: Determine ALGEBRAICALLY whether each function is even, odd, or neither.

a. \(g(x) = x^3 - x \)
 b. \(h(x) = x^2 + 1 \)
 c. \(f(x) = x^3 + x - 3 \)

Example 3: Given the following information, evaluate each of the following...

a. If \(f(x) \) is odd and \(f(2) = -3 \), then find \(f(-2) \).
 b. If \(f(x) \) is even and \(f(-6) = -0.5 \), then find \(f(6) \).
 c. If \(f(x) \) is odd and \(f(-1) = -5 \), then find \(f(1) \).
Piecewise Function – A function made up of two or more equations with given domains for each. The "pieces" are graphed one at a time.

\[f(x) = \begin{cases}
 x + 1, & x \geq 0 \\
 -x^2, & x < 0
\end{cases} \]

Example 1: Evaluate the function \(f(x) = \begin{cases}
 x + 1, & x \geq 0 \\
 -x^2, & x < 0
\end{cases} \) for the following \(x \)-values.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (x = -1)</td>
<td>(f(x) = -1^2 = -1)</td>
</tr>
<tr>
<td>b. (x = 0)</td>
<td>(f(x) = 0 + 1 = 1)</td>
</tr>
<tr>
<td>c. (x = 1)</td>
<td>(f(x) = 1 + 1 = 2)</td>
</tr>
<tr>
<td>d. (x = 4)</td>
<td>(f(x) = 4 + 1 = 5)</td>
</tr>
</tbody>
</table>

Example 2: Graph each piece-wise function.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
</table>
| a. \(f(x) = \begin{cases}
 2x + 3, & x \leq 1 \\
 -x + 4, & x > 1
\end{cases} \) |
| b. \(f(x) = \begin{cases}
 -(x + 2)^2, & x \leq -1 \\
 |x| + 4, & x > -1
\end{cases} \) |
Greatest Integer Function - \(f(x) = [x] \) Reads as “\(f(x) \) is equivalent to the greatest integer less than or equal to \(x \).”

\([-2.75] = “The greatest integer less than or equal to -2.75.”

Example 3: Evaluate each of the following for \(f(x) = [x] \).

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (f(5))</td>
<td>b. (f(-3.2))</td>
<td>c. (f(1.9))</td>
<td>d. (f(-0.5))</td>
</tr>
</tbody>
</table>

So what does the graph of \(f(x) = [x] \) look like?

The domain of the function is _____________. The range of the function is _____________. The graph has a \(y \)-intercept at _____________ and \(x \)-intercepts on the interval _____________. The graph is _____________ between each pair of consecutive integers. The graph _____________ vertically ________ unit(s) at each integer value. The closed dot is on the _____________ and the open dot is on the _____________.

Example 4: Graph each function. Use what you learned about transformations of parent graphs.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (f(x) = [x + 2] - 1)</td>
<td>b. (f(x) = -2[x])</td>
<td>c. (f(x) = \frac{1}{3} x + 2)</td>
</tr>
</tbody>
</table>