Pre-Calculus Notes

Section 6.1 - Intro to the Law of Sines
Section 6.2 - Areas of Triangles

The LAW of SINES... what is its use? solving for sides and angles of △

When given 2 angles and 1 side, or 2 sides and non-included angle.

AAS
ASA
SSA

MEMORIZE: THE LAW OF SINES

* to be used given AAS, ASA, or SSA

For ANY triangle \(\triangle ABC \), where \(a \), \(b \), and \(c \) are the lengths of the sides OPPOSITE the angles with measures \(A \), \(B \), and \(C \) (respectively),

\[
\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}.
\]

Law of Sines

Example 1: Solve \(\triangle ABC \).

a. Note: We are given ASA here.

\[
sin \ 81^\circ = \frac{sin 42^\circ}{b}
\]

\[
a \sin 81^\circ = 67 \sin 42^\circ
\]

\[
a = \frac{67 \sin 42^\circ}{\sin 81^\circ}
\]

\[
a \approx 45
\]

\[
c = 180 - 42 - 57
\]

\[
C = 81^\circ
\]

b. Note: We are given AAS here.

\[
sin 23^\circ = \frac{sin 87^\circ}{a}
\]

\[
a \sin 87^\circ = 47.5 \sin 23^\circ
\]

\[
a = \frac{47.5 \sin 23^\circ}{\sin 87^\circ}
\]

\[
a \approx 18.6
\]

\[
\sin 70^\circ = \frac{sin 87^\circ}{a}
\]

\[
b \sin 87^\circ = 47.5 \sin 70^\circ
\]

\[
b = \frac{47.5 \ sin 70^\circ}{\sin 87^\circ}
\]

\[
b \approx 44.7
\]
Example 2: WORD PROBLEM.

A ship is moving in a straight line towards the Point Cove lighthouse. The measure of the angle of elevation from the bridge of the ship to the lighthouse beacon is 25°. Later, from a point 600 feet closer, the angle of elevation is 47°. To the nearest foot, how high is the beacon above the level of the bridge of the ship?

\[
\sin 25° = \frac{\sin 22°}{y} = \frac{600 \sin 25°}{\sin 22°}
\]

Store in calculator!

\[
\sin 47° = \frac{x}{y}
\]

\[
x = y \sin 47°
\]

\[
x \approx 495 \text{ ft}
\]

Example 3: WORD PROBLEM.

The bearing from the Pine Knob fire tower to the Colt Station fire tower is N 65° E, and the two towers are 30 kilometers apart. A fire spotted by rangers in each tower has a bearing of N 80° E from Pine Knob and S 65° E from Colt Station. Find the distance of the fire from the Pine Knob tower.

\[
\sin 35° = \frac{\sin 130°}{x}
\]

\[
x = \frac{30 \sin 130°}{\sin 35°}
\]

\[
x \approx 40 \text{ km}
\]

Do you remember the formula for finding the area of a triangle given SAS?

\[A = \frac{1}{2}bh\]

\[K = \frac{1}{2}b \cdot c \sin A\]

\[\sin A = \frac{h}{c}\]

\[h = c \sin A\]

The area, \(K\) of triangle \(ABC\) is given by any one of these formulas:

\[K = \frac{1}{2}bc \sin A\]

\[K = \frac{1}{2}ac \sin B\]

\[K = \frac{1}{2}ab \sin C\]
We also have a formula for finding the area of a triangle given SSS. (The Greek mathematician Heron developed the formula—hence it is called HERON'S AREA FORMULA.)

The area, \(K \) of triangle \(ABC \) is given by:

\[
K = \sqrt{s(s-a)(s-b)(s-c)}, \text{ where } s = \frac{a+b+c}{2}.
\]
s is called the semi-perimeter of the triangle.

Example 1: Determine the area of \(\triangle DEF \) to the nearest square inch. DRAW A PICTURE.

\(d = 15.2, \ e = 22.7, \text{ and } f = 8.9 \)

\[
S = \frac{15.2 + 22.7 + 8.9}{2} = 23.4
\]

\(K \approx 44 \text{ in}^2 \)

Store! (Saves time)
(as \(x \))

Example 2: Which formula would you use to find the area of the following triangles? Find the area.

a. SAS

\[
K = \frac{1}{2} \cdot b \cdot h
\]

\(K \approx 4.6 \text{ u}^2 \)

b. \(S = \frac{s + t + \frac{s}{2}}{2} = 6.5 \)

\[
K = \sqrt{s(s-a)(s-b)(s-c)}
\]

\(K \approx 5.3 \text{ u}^2 \)

c. \(\triangle \)

\(K = \frac{1}{2} \cdot b \cdot h \)

\(K \approx 12 \text{ u}^2 \)

d. \(\triangle \) Law of Sines to find side length

\[
\sin 50^\circ = \frac{x}{10} \quad x = \frac{10 \sin 50^\circ}{\sin 100^\circ}
\]

\(K \approx 19.4 \text{ u}^2 \)

Example 3:

You want to buy a triangular lot measuring 1350 feet by 1860 feet by 2490 feet. The price of the land is $2200 per acre. How much does the land cost? (1 acre = 43,560 square feet)

\[
S = \frac{P}{2} = \frac{1350 + 1860 + 2490}{2} = 2850
\]

\[
K = \sqrt{2850 \cdot 1500 \cdot 990 \cdot 360}
\]

\(K \approx 1234345.981 \text{ ft}^2 \)

\(\frac{43560}{\text{ft}^2} \)

\(K \approx 28.33668489 \text{ acres} \times 2200 \)

Cost \(\approx \$ 62,340.71 \)